315 research outputs found

    La inmunomodulación puede contrubuir al mecanismo de acción de los antimicrobianos

    Get PDF
    Hay evidencias científicas sobre el efecto inmunomodulador de los antimicrobianos (sobre todo macrólidos y quinolonas). Esta información nos sugiere la necesidad de valorar este efecto como criterio de selección de un agente antimicrobiano para el tratamiento de un proceso infeccioso.

    Vaccination is a suitable tool in the control of Aujeszky's disease outbreaks in pigs using a Population Dynamics P systems model

    Get PDF
    Aujeszky's disease is one of the main pig viral diseases and results in considerable economic losses in the pork production industry. The disease can be controlled using preventive measures such as improved stock management and vaccination throughout the pig-rearing period. We developed a stochastic model based on Population Dynamics P systems (PDP) models for a standard pig production system to differentiate between the effects of pig farm management regimes and vaccination strategies on the control of Aujeszky's disease under several different epidemiological scenarios. Our results suggest that after confirming the diagnosis, early vaccination of most of the population (>75%) is critical to decrease the spread of the virus and minimize its impact on pig productivity. The direct economic cost of an outbreak of Aujeszky's disease can be extremely high on a previously uninfected farm (from 352-792 Euros/sow/year) and highlights the positive benefits of investing in vaccination measures to control infections. We demonstrate the usefulness of computational models as tools in the evaluation of preventive medicine programs aimed at limiting the impact of disease on animal production.This work was partially supported by FEDER project COMRDI16-1-0035-03

    Piglet nasal microbiota at weaning may influence the development of Glässer's disease during the rearing period

    Get PDF
    The microbiota, the ensemble of microorganisms on a particular body site, has been extensively studied during the last few years, and demonstrated to influence the development of many diseases. However, these studies focused mainly on the human digestive system, while the populations in the respiratory tract have been poorly assessed, especially in pigs. The nasal mucosa of piglets is colonized by an array of bacteria, many of which are unknown. Among the early colonizers, Haemophilus parasuis also has clinical importance, since it is also the etiological agent of Glässer's disease. This disease produces economical losses in all the countries with pig production, and the factors influencing its development are not totally understood. Hence, the purpose of this work was to characterize the nasal microbiota composition of piglets, and its possible role in Glässer's disease development. Seven farms from Spain (4 with Glässer's disease and 3 control farms without any respiratory disease) and three farms from UK (all control farms) were studied. Ten piglets from each farm were sampled at 3-4 weeks of age before weaning. The total DNA extracted from nasal swabs was used to amplify the 16S RNA gene for sequencing in Illumina MiSeq. Sequencing data was quality filtered and analyzed using QIIME software. The diversity of the nasal microbiota was low in comparison with other body sites, showing a maximum number of operational taxonomic units (OTUs) per pig of 1,603, clustered in five phyla. Significant differences were found at various taxonomical levels, when the microbiota was compared regarding the farm health status. Healthy status was associated to higher species richness and diversity, and UK farms demonstrated the highest diversity. The composition of the nasal microbiota of healthy piglets was uncovered and different phylotypes were shown to be significantly altered in animals depending on the clinical status of the farm of origin. Several OTUs at genus level were identified over-represented in piglets from control farms, indicating their potential as probiotics. Although we provide relevant data, fully metagenomic approaches could give light on the genes and metabolic pathways involved in the roles of the nasal microbiota to prevent respiratory diseases. The online version of this article (doi:10.1186/s12864-016-2700-8) contains supplementary material, which is available to authorized users

    Piglet nasal microbiota at weaning may influence the development of Glässer's disease during the rearing period

    Get PDF
    The microbiota, the ensemble of microorganisms on a particular body site, has been extensively studied during the last few years, and demonstrated to influence the development of many diseases. However, these studies focused mainly on the human digestive system, while the populations in the respiratory tract have been poorly assessed, especially in pigs. The nasal mucosa of piglets is colonized by an array of bacteria, many of which are unknown. Among the early colonizers, Haemophilus parasuis also has clinical importance, since it is also the etiological agent of Glässer's disease. This disease produces economical losses in all the countries with pig production, and the factors influencing its development are not totally understood. Hence, the purpose of this work was to characterize the nasal microbiota composition of piglets, and its possible role in Glässer's disease development. Seven farms from Spain (4 with Glässer's disease and 3 control farms without any respiratory disease) and three farms from UK (all control farms) were studied. Ten piglets from each farm were sampled at 3-4 weeks of age before weaning. The total DNA extracted from nasal swabs was used to amplify the 16S RNA gene for sequencing in Illumina MiSeq. Sequencing data was quality filtered and analyzed using QIIME software. The diversity of the nasal microbiota was low in comparison with other body sites, showing a maximum number of operational taxonomic units (OTUs) per pig of 1,603, clustered in five phyla. Significant differences were found at various taxonomical levels, when the microbiota was compared regarding the farm health status. Healthy status was associated to higher species richness and diversity, and UK farms demonstrated the highest diversity. The composition of the nasal microbiota of healthy piglets was uncovered and different phylotypes were shown to be significantly altered in animals depending on the clinical status of the farm of origin. Several OTUs at genus level were identified over-represented in piglets from control farms, indicating their potential as probiotics. Although we provide relevant data, fully metagenomic approaches could give light on the genes and metabolic pathways involved in the roles of the nasal microbiota to prevent respiratory diseases. The online version of this article (doi:10.1186/s12864-016-2700-8) contains supplementary material, which is available to authorized users

    Resilience effects of SGK1 and TAP1 DNA markers during PRRSV outbreaks in reproductive sows

    Get PDF
    The porcine reproductive and respiratory syndrome virus (PRRSV) is a major infectious stressor that causes serious health problems and productivity drops. Based on previous genome-wide analyses, we selected SGK1 and TAP1 as candidate genes for resilience, and genotyped three mutations, including a 3′UTR variant SGK1_rs338508371 and two synonymous variants TAP1_rs1109026889 and TAP1_rs80928141 in 305 Landrace × Large White sows. All polymorphisms affected the reproductive performance in the outbreak, but not during the endemic phase, thereby indicating a potential use of these markers for resilience. Moreover, some genotypes were associated with a stable performance across PRRSV phases. Thus, in the outbreak, the SGK1_rs338508371 AA sows had less piglets born alive (p < 0.0001) and more stillborns (p < 0.05) while other sows were able to keep their productivity. During the outbreak, TAP1_rs80928141 GG sows had less piglets born alive (p < 0.05) and both TAP1 polymorphisms influenced the number of mummies in an additive manner (p < 0.05). Remarkably, TAP1_rs80928141 AA sows had around one mummy more than GG sows (p < 0.01). Resilience to PRRSV could be improved by including the SGK1 and TAP1 markers in crossbreeding and/or selection schemes, as they contribute to maintaining a stable number of piglets born alive and lost, particularly mummies, despite the outbreak.This research and the APC were partially funded by FEDER projects COMRDI16-1-0035-03 and RTI2018-097700-B-I00 from the Spanish Ministry of Science, Innovation, and Universities. M.L. received a postdoctoral grant from UdL-Impuls programme
    corecore